Introduction: History of nuclear power (Part 2)

So, I left off the last post with the start of commercial nuclear power testing, where did it go from there?

The first full-scale commercial nuclear power plant was called ‘Yankee Rowe’ and was opened in Rowe, Massachusetts in 1960 (it operated until 1992). This facility was able to produce 250MW of electricity, and its success spurred on the uptake of nuclear technology around the world(1).

By 1972, there were commercial nuclear reactors built in Canada, France, the UK, Russia and Kazakhstan, along with those already built in Iran, Pakistan and Israel(1).

Despite a drop off in orders for new reactors during the 1970s and 1980s, global electricity production from nuclear remained at around 16-17% (1).

Following this slump, nuclear energy began to take off again, mainly due to the development of the ‘third generation’ style of nuclear reactors. The first third generation reactor was built in Japan in the late 1990s, and boasted superior safety and affordability(1).

The attributes that signify a third generation reactor include:

  • Standard (often modular) design
    • This allows for cost savings and for some parts of the structure to be built off-site
  • Longer lifespan
    • Up to 60 years
  • Reduced possibility of meltdown
    • This is achieved by including many more redundant and ‘always on’ passive safety features
  • Resistance to external damage
  • Higher efficiency of the reactor itself by:
    • Using more of the stored energy in the fuel
    • Producing less waste
    • Extending the useful life of the fuel (2)

The realisation that the world is using every increasing amounts of electricity, along with concerns for energy security and carbon emissions has also seen a spike in the amount of nuclear power being accessed around the world (1).

However the areas traditionally associated with nuclear power, the US and Russia, are not where this new demand is coming from. There has been a huge increase in uptake of nuclear power in India and Eastern Asia, where energy demands and the environmental impacts of massive coal-burning power stations are being felt (3).

China currently has 26 active nuclear power stations, with 25 more currently under construction. There are also plans for many more to be built in the future (3).

On our home turf in Australia, we still only have one (experimental) nuclear reactor, despite having 31% of the world’s uranium supply (4). There are hints of change on the horizon, with South Australia’s royal commission and increasing calls from the public for investing in non-fossil fuel alternatives.

Hopefully we will see some change in the future, but that is unlikely to happen in the current nuclear climate in Australia, with a lingering resistance to this kind of technology. And who knows, if the Greens (who steadfastly refuse to use nuclear power) continue to gain more seats in the parliament, we may not see this change for a while.

You may have noticed three glaring omissions from this brief history of nuclear power, don’t worry I haven’t forgotten.

My next post will be one where we start to look a little bit more at the nuclear controversy itself, when I discuss three events that have probably had the biggest impact on the debate of nuclear power: the Three Mile Island, Chernobyl, and Fukushima nuclear disasters.

Say something controversial.








Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s