The Castle Bravo incident

In my previous discussion of the disasters of the nuclear age, there was one that I probably should have mentioned. To be honest, I had never heard of it. That itself speaks volumes about the influence of certain mindsets on the nuclear debate. The incident I’m talking about came to be known as the ‘Castle Bravo’ incident, and it remains the worst example of US caused nuclear contamination ever.

You may never have heard of Castle Bravo, but you probably heard of its flow on effects. Ever heard of Godzilla?

Early in the morning of March 1, 1954, the USA detonated the most powerful weapon it has yet detonated. The ‘Bravo’ test of Operation Castle, this bomb was designed to study the efficacy of ‘dry fuel’ fusion nuclear weapons (hydrogen bombs). Originally planned to be around 5 megatons in power, the actual blast was on the order of 15 megatons.

Photo of the Castle Bravo test fireball, an immense fireball seen from a great distance, the sky is dark because of how bright it is.

The Castle Bravo explosion from 30 miles away. Los Alamos National Laboratory.

This highlights some of the problems in the scientific culture at the time (and to a lesser extent, today), as the scientists involved were completely sure that what they had planned would happen. A vast miscalculation about the behaviour of the fuel resulted in the enormous blast, but this miscalculation had further effects as the safety protocols developed for the test underestimated the strength of the explosion. In the ensuing chaos, many military personnel were exposed to high levels of radioactive fallout.

In addition to the size of the explosion, there was also a meteorological miscalculation, that resulted in the fallout cloud drifting towards the Marshall Islands, instead of away from them. The populations of the effected islands are still unable to return. A Japanese fishing vessel was also hit hard, with one man dying, which caused a significant political issue with the US.

Because they messed it up so much, the US government was forced to go public about the test, in one moment revealing the extent of their nuclear research to the USSR, but also revealing to the world the terrifying strength of nuclear weapons (especially the effects of radiation and fallout).

The Castle Bravo test is said by some to be the first incident to spark ‘radiophobia‘ around the world, with the dangers being made visible through the suffering of the Japanese and Pacific Islander bystanders and the members of the military who were inadvertently exposed.

In terms of the nuclear power debate, as I said in my previous post, these events have the power to impact the public in a way that cannot simply be undone by presenting facts. Too often, such as in the case of the Chernobyl or Sellafield, the public (or the government) is assured of the safety of a particular scenario, and it is only after problems have developed that the scientists critically evaluate their work (if ever). To combat radiophobia and the negative impacts of these sort of events, much more needs to be done than just reiterating facts at people.

Say something controversial.

Matt

Sources

https://medium.com/war-is-boring/those-who-witnessed-castle-bravo-looked-into-armageddon-fa7610578413

https://en.wikipedia.org/wiki/Castle_Bravo

http://www.lanl.gov/science/weapons_journal/wj_pubs/12nwj1-06.pdf

The ‘Trinity’ video and above ground testing

I want to take this post to show and discuss a video I found while doing research for this blog.

This video is probably the best example I have seen of a video that really shows the largely undiscussed issue of above ground testing. It also goes a long way to explain the issues that many people have with nuclear power, and it also shows the responsibility that people have to ensure that their government abides by rules that the rest of the world will be comfortable with.

In the US alone, ‘Operation Plumbbob’, which only ran from May to October 1957, resulted in 29 above ground nuclear detonations in the Nevada desert, and is predicted to have increased the rate of thyroid cancer in the US by 1-20 thousand cases per year since (1).

All of the detonations you see in the middle of the Pacific Ocean are from the so called ‘Pacific Proving Ground’, an area of around 360,000 km² in which the US set off 105 atmospheric detonations, including many that dropped fallout on inhabited islands (5).

The largest human made explosion ever set off, the Tsar Bomba (Царь-бомба), was a nuclear bomb detonated by the USSR in far norther Russia. It was an above ground detonation and the blast wave is thought to have circled the world more than three times, and broke windows as far away as Norway (6). (It was the large detonation at about 3 minutes 30 into the video.)

Between 1954–1992, 520 atmospheric test detonations have been conducted by states around the world. It was only with the introduction of the Partial Test Ban Treaty in 1963, that the US and the USSR (the two biggest contributors) stopped detonating above ground (4). (Of course many countries kept testing after this, and the US and USSR kept testing underground.)

The US EPA has a great page detailing the levels of contamination around the world, as well as the effects of the contamination on human populations, here.

When talking about issues that involve nuclear physics, it is important to remember this type of information. Even if you are trying to win your arguement based solely on a factual basis, it is imperative that you take in to consideration the vast amounts of pain and suffering many different groups of people aroudn the world have been through, before you attempt to dismiss the worries of safety. If people don’t feel safe, then it is probably because you have not explain it well enough. Of course there will always be people who are opposed, but you still cannot disregard their (legitimate) feelings on the subject.

Many countries have paid out monetary compensation to those people who have suffered because of this kind of testing, but money (while helpful) probably does little to assuage their trauma.

Say something controversial.

Matt

References

(1) http://www.kcet.org/updaily/socal_focus/commentary/east-ca/50-years-on-aboveground-nuke-testing-still-shaping-desert.html

(2) http://www.theatlantic.com/photo/2011/05/when-we-tested-nuclear-bombs/100061/

(3) http://www.deq.utah.gov/Topics/Radiation/fallout/index.htm

(4) https://en.wikipedia.org/wiki/Partial_Nuclear_Test_Ban_Treaty

(5) https://en.wikipedia.org/wiki/Nuclear_weapons_testing

(6) http://gizmodo.com/5977824/the-biggest-bomb-in-the-history-of-the-world

Introduction: The history of nuclear power (Part 1)

So, where did all this begin? Unfortunately, there is no denying that the roots of nuclear power have their origins in something far more sinister: nuclear bombs.

The first part of this two part history will focus on the initial development of nuclear energy tools, and the second part will discuss the development of this technology to where it is today.

The driving force that was WWII resulted in a burst of research on nuclear energy; nuclear fission had only been discovered in the 1930s but there were mounting fears of a German nuclear weapon(1). The Manhattan project was the result of this fear, and following many years of research in the UK and the US, the first successful nuclear weapon was detonated on 16 July 1945, at the White Sands Proving Ground in New Mexico. The ‘Trinity’ test was the first to showcase the awesome power possible from an uncontrolled nuclear reaction(2).

image of first nuclear bomb detonation

The Trinity test, 0.016 seconds after detonation. The height of the blast wave is 200 meters.

Just 21 and 24 days later respectively, the bombs would be dropped on Hiroshima and Nagasaki. It was only after the end of WWII, that the potential energy generating applications of controlled nuclear reactions were explored. After the huge effort required to create the atomic weaponry that ended WWII, there was a large accumulation of technology and expertise that allowed the USA to direct its energy to energy production(1).

The first test nuclear reactor to produce electricity was named ‘Experimental Breeder Reactor-1 (EBR-1), and was switched on for the first time in Idaho, in December 1951 (1).

The US President at the time was Eisenhower, and following the end of the war he gave a speech titled ‘Atoms for Peace’. An example of cold war propaganda, this speech attempted to muffle the fear the world was feeling about living in a nuclear age, and direct their thoughts to the possibilities nuclear power offered:

“To the making of these fateful decisions, the United States pledges before you–and therefore before the world–its determination to help solve the fearful atomic dilemma–to devote its entire heart and mindto find the way by which the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life.”(3)

This speech also initiated a US government program of the same name which entailed the free spread of information around the world to enable governments to build their own nuclear reactors, with the goal of cheap energy for everyone. It was through this program that Pakistan, Iran and Israel were able to build their first nuclear reactors(4).

Aside from basic electricity generation, nuclear reactors also had the benefit of using much less fuel for a given amount of energy, and it for this reason that much research in the late 40s and early 50s was directed towards producing reactors for naval use(1).

The Pressurised Water Reactor (PWR) was a design that was favoured for naval use as it used ordinary water in its reactor core, where previous designs had required the use of ‘heavy’ water(1).

Following the development of PWRs the USS Nautilus, the first nuclear submarine, was launched in 1954. The USA and USSR then went on to launch nuclear powerd ships in 1959.

The first nuclear power plant that provided electricity to the grid was also a PWR, and was switched on in 1957 and ran until 1982. This was the dawn of the commercial age of nuclear reactor technology(1).

I will finish up the history of nuclear power in the next post.

Say something controversial.

Matt

References

  1. http://www.world-nuclear.org/info/Current-and-Future-Generation/Outline-History-of-Nuclear-Energy/
  2. https://www.osti.gov/opennet/manhattan-project-history/Events/1945/trinity.htm
  3. https://www.iaea.org/about/history/atoms-for-peace-speech
  4. http://www.armscontrol.org/act/2003_12/Lavoy