The Castle Bravo incident

In my previous discussion of the disasters of the nuclear age, there was one that I probably should have mentioned. To be honest, I had never heard of it. That itself speaks volumes about the influence of certain mindsets on the nuclear debate. The incident I’m talking about came to be known as the ‘Castle Bravo’ incident, and it remains the worst example of US caused nuclear contamination ever.

You may never have heard of Castle Bravo, but you probably heard of its flow on effects. Ever heard of Godzilla?

Early in the morning of March 1, 1954, the USA detonated the most powerful weapon it has yet detonated. The ‘Bravo’ test of Operation Castle, this bomb was designed to study the efficacy of ‘dry fuel’ fusion nuclear weapons (hydrogen bombs). Originally planned to be around 5 megatons in power, the actual blast was on the order of 15 megatons.

Photo of the Castle Bravo test fireball, an immense fireball seen from a great distance, the sky is dark because of how bright it is.

The Castle Bravo explosion from 30 miles away. Los Alamos National Laboratory.

This highlights some of the problems in the scientific culture at the time (and to a lesser extent, today), as the scientists involved were completely sure that what they had planned would happen. A vast miscalculation about the behaviour of the fuel resulted in the enormous blast, but this miscalculation had further effects as the safety protocols developed for the test underestimated the strength of the explosion. In the ensuing chaos, many military personnel were exposed to high levels of radioactive fallout.

In addition to the size of the explosion, there was also a meteorological miscalculation, that resulted in the fallout cloud drifting towards the Marshall Islands, instead of away from them. The populations of the effected islands are still unable to return. A Japanese fishing vessel was also hit hard, with one man dying, which caused a significant political issue with the US.

Because they messed it up so much, the US government was forced to go public about the test, in one moment revealing the extent of their nuclear research to the USSR, but also revealing to the world the terrifying strength of nuclear weapons (especially the effects of radiation and fallout).

The Castle Bravo test is said by some to be the first incident to spark ‘radiophobia‘ around the world, with the dangers being made visible through the suffering of the Japanese and Pacific Islander bystanders and the members of the military who were inadvertently exposed.

In terms of the nuclear power debate, as I said in my previous post, these events have the power to impact the public in a way that cannot simply be undone by presenting facts. Too often, such as in the case of the Chernobyl or Sellafield, the public (or the government) is assured of the safety of a particular scenario, and it is only after problems have developed that the scientists critically evaluate their work (if ever). To combat radiophobia and the negative impacts of these sort of events, much more needs to be done than just reiterating facts at people.

Say something controversial.




A lot of what I’ve been talking about on this blog, especially related to the emotional aspects of the nuclear debate, can really be boiled down to one particular issue: ‘radiophobia’.

In a strictly medical sense, radiophobia can be defined as the irrational fear of ionizing radiation (the type of radiation associated with nuclear power/bombs). This definition is most often applied to those who are irrationally afraid of X-rays, in a medical context.

What radiophobia is more often used to denote, especially in the nuclear debate, is the pervasive negative emotion associated with all kinds of nuclear technology.

Studies have shown that there is a long term emotional impact of large events, like Chernobyl, and there is growing coverage of the same radiophobia developing in Japan.

This negative opinion tends to colour people’s ability to calmly and rationally evaluate facts associated with the debate. Many cite radiophobia as the reason that people have a disproportionate response to the perceived risk of technologies that use radioactive materials. With proper safety in place, nuclear technology is not more dangerous than any other, and is often safer than many (such as coal, see the early posts on the science of the nuclear debate).

Despite the rational safety level of nuclear power, the disproportionate negative response tends to develop anti-nuclear campaigner’s arguments to the point where they become a ‘special pleading‘ fallacy. Special pleading is a fallacy where an exception to the normal rules is requested, for no valid reason. In the nuclear debate, this manifests itself in people who reject the use of nuclear technology for safety reasons, despite the evidence that nuclear is safer compared to other technologies.

In identifying this fallacy though, I am not trying to attack the completely legitimate feelings of those who have suffered though or know those who have suffered through radiation based incidents. Although the argument itself is a fallacy, the very real emotion behind it should be respected, and those who aim to debate in this arena should think about the impact of their words and how best to communicate their ideas before stepping up to the plate.

Say something controversial.


Location, location, location: Why doesn’t location get talked about in the nuclear debate?

VICE’s technology arm recently posted a story called: “​How Volcanic Eruptions Threaten Nuclear Power Plants“, which details the debate going on in Japan about the proximity of some of their nuclear power plants to active volcanoes. Despite the fact that they are not close enough to be affected by actual lava or pyroclastic flows, (as reiterated by vulcanologists), these plants are close enough to be negatively affected by ash from the eruptions. This article gave me something to think about, how location affects the nuclear debate.

Volcanoes are not the only problems that Japan’s nuclear power industry faces. Japan has a lot of volcanoes because it is on the edge of what is called the ‘Ring of Fire’. The ‘Ring of Fire’ runs around the boundary of the Pacific Ocean, and is where numerous undersea tectonic plates meet with the continental tectonic plates. The result of this is that there is a lot of volcanic activity as well as lots of earthquakes.

What else comes with earthquakes though? Tsunamis. As everyone is probably aware, Japan has to deal with tsunamis at comparatively frequent rate. We only need to recall the Fukushima Daaichi disaster to see how true the fear of natural disasters affecting nuclear power plants is. To be fair, Fukushima was unlucky enough to be hit by an earthquake and then a tsunami. But it does beg the question, is it wise to build a nuclear reactor, no matter how well designed and how many precautions have been taken, in a place where these sort of natural disasters are commonplace?

Compare Japan with Australia on that map above. Australia sits right in the middle of a continental tectonic plate, and the centre of Australia is pretty much as far from the sea and large earthquakes you can get.

If Australia were to build nuclear reactors somewhere in the vast unused land area that in the middle of the outback, it is almost guaranteed (touch wood) that there would be no natural disasters that could affect it, the main issues that would remain would be dealing with the heat, getting water to the site and getting the energy back to the coast.

But this point rarely, if ever, comes up in debates. Anti-nuclear advocates are allowed to go on about the possible dangers of natural disasters (an in places like Japan, they are probably right), but the pro-nuclear side never seems to rebut this with the idea that we build somewhere where that these things are unlikely to happen.

Say something controversial.


Introduction: Context for the blog

For my first real post on this blog, I thought I might outline the idea behind the blog and what you can expect in the future.

In a world where climate change is a topic almost constantly in the media, energy generation and fossil fuels are important topic in both civil and political spheres. Renewable energy solutions are important and there is much exciting science coming our way in the future. Then there is nuclear power. Nuclear power, specifically fission power, has been around for a while (a lot longer than you think, as I’ll explain in my next post) and boasts significant efficiency, cost and safety (yes, safety) benefits over other non-renewable energy sources (1).

Despite this, nuclear power remains a controversial topic worldwide, and especially in Australia. Disasters such as the infamous Chernobyl, Three Mile Island and Fukushima, as well as lesser known incidents, such as the Sellafield fire in the UK reinforce the negative associations of nuclear power. Atomic energy of any sort has this negative association, and this is probably due to the effects of the bombs dropped on Hiroshima and Nagasaki, as well as the above ground testing in the USA, and the Pacific in the 50s, 60s and 70s, and all the negative outcomes associated with these events.

But all is not bad with nuclear power. In fact, a recent study showed that nuclear fission is significantly safer than coal power, despite the three major nuclear incidents of the past 70 years. The paper published by NASA (2), showed that nuclear power was responsible for preventing an average 76,000 deaths between 2000-2009, and an estimated 1.8 million deaths before 2000, because less coal power was needed.

The controversy surrounding nuclear power is one fraught with emotion and complex discussions of risk vs. reward. In Australia we currently have no commercial power stations, and only one small research reactor at the Australian Nuclear Science and Technology Organisation (ANSTO). However, we also have the majority of the world’s uranium ore, with current estimates at 31% of the world’s supply (we are the third largest producer of uranium after Canada and Kazakhstan) (3).

Having this valuable resource and not making use of it seems a bit counter intuitive, and there has been multiple attempts to allow nuclear power in Australia, all of which were unsuccessful. However, the nuclear landscape in Australia is still lively, with South Australia announcing a Royal Commission into nuclear power generation, in response to the current economic contraction.

Nuclear power remains contentious and I hope to delve deep into the controversy in Australia and around the world of the next 10 weeks. First I will start with a bit of history, of nuclear power itself, and the controversies and social movements that have grown up around it. After this, I hope to flesh out the controversy, identify the key players, their impacts and motviations, and really get to the core of the nuclear power issue. Thanks for reading, if you have any comments, queries or suggestions for the blog, please comment below.

Say something controversial.